
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

SILICON ECONOMY  
 
B2B PLATFORM ECONOMY REFERENCE 
ARCHITECTURE CONCEPT 
 
Report  

FRAUNHOFER-INSTITUT FÜR SOFTWARE-  UND SYSTEMTECHNIK ,  ISST 

 



 

 

Steffen Biehs 

Martin Fitzke 

Fraunhofer Institute for Software and Systems Engineering ISST 
 
 

Carina Culotta 

Timo Erler 

Fraunhofer Institute for Material Flow and Logistics IML 
 
 
 
 
 
 
 
 
 
 
 
Dortmund 
January 2025  
 



 

Fraunhofer ISST & Fraunhofer IML          3 | 27 

 

 
 

Table of Content 
 

1  Introduction ....................................................................................................... 5 

2  Reference Software Architecture .................................................................... 7 
2.1 Introduction and Goals ........................................................................................ 7 
2.1.1 Requirements Overview ....................................................................................... 8 
2.1.2 Quality Goals ....................................................................................................... 8 
2.1.3 Stakeholders ........................................................................................................ 8 
2.1.3.1 Participant ........................................................................................................ 8 
2.1.3.2 4PL service provider .......................................................................................... 9 
2.1.3.3 OEM ................................................................................................................. 9 
2.1.3.4 Contract logistics (3PL) ..................................................................................... 9 
2.1.3.5 Forwarder (2PL) ................................................................................................ 9 
2.1.3.6 Supplier ............................................................................................................ 10 
2.1.3.7 Customer ......................................................................................................... 10 
2.2 Constraints .......................................................................................................... 10 
2.2.1 Technical Constraint............................................................................................. 10 
2.2.2 Conventions ......................................................................................................... 10 
2.3 Context and Scope............................................................................................... 11 
2.4 Solution Strategy.................................................................................................. 11 
2.5 Building Block View.............................................................................................. 11 
2.5.1 Whitebox Overall System – Level 1 ....................................................................... 11 
2.5.1.1 Blackbox Subsystem Connector ........................................................................ 12 
2.5.1.2 Blackbox Subsystem Broker .............................................................................. 12 
2.5.2 Whitebox Level 2: Connector ............................................................................... 13 
2.5.2.1 Blackbox Module Extension .............................................................................. 14 
2.5.2.2 Blackbox Module Service Information ............................................................... 14 
2.5.2.3 Blackbox Module Database .............................................................................. 14 
2.5.2.4 Blackbox Module Data Model Library ............................................................... 14 
2.5.3 Whitebox Level 3: Extension ................................................................................. 15 
2.5.3.1 Blackbox Submodule Extension Core ................................................................ 15 
2.5.3.2 Blackbox Submodule Extension API .................................................................. 15 
2.5.4 Whitebox Level 4.1: Extension Core ..................................................................... 16 
2.5.4.1 Blackbox Class ApiController ............................................................................ 16 
2.5.4.2 Blackbox Class EndpointExtension .................................................................... 16 
2.5.5 Whitebox Level 4.2: Extension API ........................................................................ 17 
2.5.5.1 Blackbox Class Api ........................................................................................... 17 
2.5.5.2 Blackbox Class InfoApi ..................................................................................... 17 
2.5.5.3 Blackbox Class ExtensionName ......................................................................... 18 
2.6 Runtime View ...................................................................................................... 18 
2.6.1 Register at Broker................................................................................................. 18 
2.6.2 Request information from Broker ......................................................................... 19 
2.6.3 Interaction between services ................................................................................ 19 
2.7 Deployment View................................................................................................. 20 
2.8 Cross-Cutting Concepts ....................................................................................... 21 
2.8.1 Data Model .......................................................................................................... 22 
2.8.2 API ....................................................................................................................... 22 
2.8.3 Architectures ........................................................................................................ 22 
2.8.3.1 Peer-to-Peer Architecture ................................................................................. 22 
2.8.3.2 Client-Server Architecture ................................................................................. 22 
2.8.3.3 Plugin Architecture ........................................................................................... 22 
2.8.4 Communication ................................................................................................... 22 
2.9 Architecture Decisions .......................................................................................... 22 
2.9.1 Using Template Connector ................................................................................... 22 



 

Fraunhofer ISST & Fraunhofer IML          4 | 27 

 

 
 

2.9.1.1 Problem ............................................................................................................ 22 
2.9.1.2 Constraints ....................................................................................................... 23 
2.9.1.3 Considered Alternatives .................................................................................... 23 
2.9.1.4 Decision ........................................................................................................... 23 
2.9.2 Using Template Extension .................................................................................... 23 
2.9.2.1 Problem ............................................................................................................ 23 
2.9.2.2 Constraints ....................................................................................................... 23 
2.9.2.3 Considered Alternatives .................................................................................... 23 
2.9.2.4 Decision ........................................................................................................... 23 
2.10 Quality Requirements ........................................................................................... 23 
2.11 Risks and Technical Debts .................................................................................... 24 
2.11.1 Risk 1: Versioning incompatibilities ....................................................................... 24 
2.11.1.1 Description ....................................................................................................... 24 
2.11.1.2 Risk Mitigation ................................................................................................. 24 
2.11.2 Risk 2: Setup up of Data Space components is not trivial ...................................... 24 
2.11.2.1 Description ....................................................................................................... 24 
2.11.2.2 Risk Mitigation ................................................................................................. 24 
2.11.3 Risk 3: Connection to another Connector fails ..................................................... 24 
2.11.3.1 Description ....................................................................................................... 24 
2.11.3.2 Risk Mitigation ................................................................................................. 24 
2.12 Glossary ............................................................................................................... 24 

3  Conclusion ......................................................................................................... 26 



Fraunhofer ISST & Fraunhofer IML          5 | 27 

 

 
 

Introduction 

 
 
 

1   
Introduction 

Digital platforms are an emerging business model for B2B companies especially in 
logistics. Digital platforms can be described from a market-oriented perspective as 
enablers for market transactions between different parties. The digital platform reduces 
transaction costs such as search- or negotiation costs. The platform participants 
represent different market sides such as suppliers and buyers. Thereby, digital platforms 
benefit from direct and indirect network effects. Direct network effects emerge when 
users benefit from the presence of the same user group – a useful example is social 
networks where users benefit from other users with whom they can connect. Indirect 
network effects emerge when the market sides benefit from each other or so-called 
complementary providers. Complementary providers can offer additional solutions that 
enhance the value of the original products and services.  
 
From a technological perspective, digital platforms can be seen as a modular, 
expendable technological infrastructure representing and depicting the respective 
business processes. Digital platforms manage and orchestrate the information flows 
about physical and virtual assets and financial streams and create benefits by 
interpreting and valorizing the generated data.  
 
Many industries in the B2B domain have tried to implement digital platforms, seeing 
the potential for reducing transaction costs and creating new, digital solutions that 
increase efficiency. However, unlike their counterparts in the B2C or C2C domain, B2B-
driven platforms fail to scale to the same level.  
 
This is accounted for by the high complexity of industrial processes, the resulting lack 
of standards, and different levels of digitalization among the supply chain partners. 
Taking these challenges into account the Silicon Economy Initiative1 was originated. 
Funded by the Federal Ministry for Digital and Transport between 2019 and 2024 more 
than 150 researchers from three different research institutes (Fraunhofer-Institute for 
Material Flow and Logistics, Fraunhofer-Institute for Software and Systems Engineering, 
and TU Dortmund University) have created more than 50 open-source software- and 
hardware solutions2, as well as qualitative concepts that help companies implement 
digital B2B platforms.  
 
Starting from the domain of logistics, the idea is to create a federal, B2B-driven 
platform economy that allows companies to realize their own scalable digital B2B 
platform solutions. In the “Silicon Economy Integration Guideline”3 interested readers 
find an extensive overview of the Silicon Economy and how to create B2B-driven 
business models. Amongst others, a Platform Alignment Canvas has been created to 
help companies identify and describe their respective business models giving insights 
on how to use the various open-source software components provided by the Silicon 
Economy from a business perspective. Beyond the different open-source software 
components that offer different applications ranging from the digitalization of freight 
documents to AI-based yard management systems, a catalog of standard functions for 

 

1 www.silicon-economy.de  

2 The open-source software solutions can be found here: 

https://git.openlogisticsfoundation.org/explore/groups  

3 www.silicon-economy.com/integration-guideline 

http://www.silicon-economy.de/
https://git.openlogisticsfoundation.org/explore/groups


Fraunhofer ISST & Fraunhofer IML          6 | 27 

 

 
 

Introduction 

 
 
 

logistics1 has been created, too. The standard functions help companies to understand 
and depict logistical processes (e.g., pallet exchange) and define the necessary data 
input. The data input can come from the Silicon Economy open-source and hardware 
software components. However, how to orchestrate and manage these data inputs 
along the different supply chain processes and partners in a scalable way is 
demonstrated by the underlying reference architecture.  
 
In the following, the necessary basics concerning data marketplaces and the data 
market framework of the IDS are laid out. Following that an arc422 software 
architecture documentation is presented, and the requirements, the stakeholders, the 
necessary components for a data marketplace, and a suitable architecture for realizing 
B2B platforms within the Silicon Economy are explained.  

 

1 www.silicon-economy.com/standardfunktionen 

2 https://arc42.org/ 



Fraunhofer ISST & Fraunhofer IML          7 | 27 

 

 
 

Reference Software Architecture 

 
 
 

2   
Reference Software Architecture 

This chapter presents the reference software architecture for a digital platform in the 
B2B context within the domain of logistics along a so-called fourth-party logistics 
service provider use case. The description is based on the arc42 documentation for 
software architectures. 

2.1 Introduction and Goals 

To ensure the practical relevance of the underlying architecture for a B2B-driven digital 
platform solution a use case was created that helps to design the respective 
architecture and ease understanding which data streams must be shared respectively 
rendered possible. In specific, a so-called fourth-party logistics (4PL) service provider 
was considered. A 4PL manages and orchestrates logistical processes without having 
own assets such as trucks or warehouses. Via a digital platform solution all relevant 
stakeholders such as an original equipment manufacturer, third-party logistics (3PL) 
service providers and second-party logistics (2PL) providers as well as suppliers and end-
customers can be integrated.   
 
The 4PL thereby provides a platform solution. However, all clients require easy and 
scalable integration. For the market participants, all other partners must be integrated 
in the same way so that data and information can be shared within the supply chain 
(e.g., status information or estimated time of arrival). The goal of the underlying 
reference architecture is to show how a digital platform solution can be designed in 
such a way that all actors can be integrated easily in a scalable way. Moreover, all 
necessary actors need to be able to communicate with each other and provide their 
digital services and information.  

 

Figure 1: Use Case of a 4PL platform business model with relevant stakeholders 

 



Fraunhofer ISST & Fraunhofer IML          8 | 27 

 

 
 

Reference Software Architecture 

 
 
 

2.1.1 Requirements Overview 

The requirements for the reference architecture were retrieved through several 
workshops of the project team. Following a domain-driven design approach, all 
stakeholders in the use case depicted above were highlighted and assigned with the 
data they must share. In this way a general understanding of how and to what extent 
data has the be shared and managed was retrieved laying the basis for the reference 
architecture. These results were also challenged by two different industry partners that 
currently pursue a 4PL business model.  
 
The respective workshops highlighted the need for easy integration of various partners 
along different existing information systems (such as warehouse management systems 
or transportation management systems). In addition, data exchange must be secured 
and must allow for the sovereignty of the respective partners. Likewise, the different 
partners must be found and related to the relevant other partners (e.g., the 3PL with 
the 4PL). Finally, to ensure the scalability of the platform and relate to the business 
reality of the stakeholders it must be possible to easily exchange partners or remove 
partners from the business ecosystem if e.g., a supplier is exchanged.  

2.1.2 Quality Goals  

Based on the ISO 25010 standard, the following three quality goals were selected for 
the reference architecture: 

Table 1 Quality goals 

Quality Goal Description 

Operability The reference architecture should be easy 
to learn so that it can be integrated into 
your own environment. It should help you 
get started in the platform economy 

Compatibility The reference architecture is to be used in 
existing IT landscapes. Integration must 
be possible with different architectures 
and technologies. In addition, IT 
landscapes of different companies should 
be able to be linked with this approach. 

Transferability It should be possible to adapt the 
reference architecture to the respective 
company scenarios and port it to the 
corresponding requirements of the 
company network. 

 
 

2.1.3 Stakeholders 

Within the reference architecture there are seven key stakeholder groups, which are 
described below. The stakeholder roles emerge from the underlying use case.  

2.1.3.1 Participant 

There is a generic participant who can assume different roles. This participant is a place 
holder for all stakeholders that can successively be integrated into the platform 
ecosystem such as new logistic service providers or new suppliers and customers.  
 



Fraunhofer ISST & Fraunhofer IML          9 | 27 

 

 
 

Reference Software Architecture 

 
 
 

2.1.3.2 4PL service provider 

The 4PL service provider is the owner of the platform. He is responsible for the platform 
infrastructure and for the depiction of the relevant business processes. In specific, 
logistical services must be managed for the OEM – his prime customer. The OEM 
wishes to outsource logistical activities including activities on the premise of the OEM 
(warehousing, goods inwards, and goods outwards as well as packaging) as well as 
transportation activities (delivery to customers, pick-ups from suppliers). In specific the 
4PL logistic service provider needs to acquire the following process information: 

- Goods requested from the supplier 

- Goods ordered from the supplier 

- Goods dispatched by the supplier via the 2PL 

- Goods received on the factory premises by the 3PL, picked and then handed over 

for assembly 

- Goods completed by the OEM and sent to outgoing goods and then packed and 

dispatched again via the 3PL 

- Goods sent via the 2PL to the customer 

- Invoice paid by the customer 

The digital platform solution offered by the 4PL is the “home” of all these information. 
At the same time, additional services such as purchasing activities and all other digital 
services such as status overview for the customer or estimated-time-or-arrival solutions, 
forecasting, and planning options can be offered by the digital platform accounting for 
the information transferred by all relevant partners. The 4PL service provider is the 
orchestrator of the entire process.  
 

2.1.3.3 OEM 

In the underlying use case, the original equipment manufacturer (OEM) is a 
manufacturing company. The OEM wishes to outsource its logistical activities as they 
are not part of the core business. At the same time, the OEM wants to expand 
manufacturing to other premises and therefore needs a service provider that can 
manage and orchestrate logistical activities beyond and across the different facilities.  
 

2.1.3.4 Contract logistics (3PL) 

The 3PL service provider is a contract logistics firm and the organizer of the logistical 
process. Whereas the 4PL service provider mainly is concerned with orchestration, the 
3PL service provider is responsible for the operations. In the underlying use case, the 
3PL service provider e.g., manages all activities on the premise such as the warehouse 
or the goods inward and outwards as well as packaging and providing the correct set 
of parts for assembly in the hall of the OEM. Likewise, the 3PL may manage also the 
second-party logistics (2PL) service providers directly.1 
 

2.1.3.5 Forwarder (2PL) 

 

1 It is also possible that the 4PL directly manages the 2PL activities. This is dependent on the respective 

business logic.  



Fraunhofer ISST & Fraunhofer IML          10 | 27 

 

 
 

Reference Software Architecture 

 
 
 

The 2PL service provider is a forwarder that carries out the physical activities outside the 
premise of the OEM which includes transportation of the incoming and outcoming 
goods from suppliers respectively to customers. The 2PL is either managed by the 3PL 
or by the 4PL directly.  

2.1.3.6 Supplier 

The supplier supplies the OEM with the necessary parts. In fact, there are several 
suppliers across various locations. 

2.1.3.7 Customer 

The customer is the end-customer of the OEM. He receives the finished and final 
product.  

2.2 Constraints 

In the following, any requirements that constraint software architects in their freedom 
of design and implementation decisions or decision about the development process are 
documented. These constraints sometimes go beyond individual systems and are valid 
for whole organizations and companies. 
 

2.2.1 Technical Constraint 

Table 2 Technical constraints 

Constraints Description 

Use of open-source dependencies Only dependencies that are open-source 
and available with suitable licenses should 
be used. 

Connector The architecture will use an EDC 
Connector1 and its extension feature as a 
technological base. 

Sufficient code documentation To increase future maintainability, the 
application source code should be 
documented with java-doc style 
documentation in addition to in-line 
comments in. 

 

2.2.2 Conventions 

Table 3 Conventions 

Constraint Description 

Architecture Format Based on the English version of the arc42 
template. 

Adaptability The architecture should be developed in 
such a way that it can be easily adapted 
to any use cases that arise. 

 

1 https://eclipse-edc.github.io/documentation/ (16.12.2024) 

https://eclipse-edc.github.io/documentation/


Fraunhofer ISST & Fraunhofer IML          11 | 27 

 

 
 

Reference Software Architecture 

 
 
 

 

2.3 Context and Scope 

The underlying architecture is meant to fulfill the overall requirements of the Silicon 
Economy allowing for easy integration of partners, and the depiction of plural 
ecosystems. Moreover, this document is part of several working results of the Silicon 
Economy and complements the Silicon Economy Integration Guideline (see above) as 
well as the catalog of Logistical Standard Functions (see above). Thus, together with 
various solutions including the open-source soft- and hardware components (see 
above) as well as the qualitative results the reference architecture is meant to help 
companies implement their digital platform solutions.  

2.4 Solution Strategy 

The solution strategy is based on the approach of creating a business scenario 
coordinated with stakeholders. This business scenario (see above) is used on the one 
hand to create a proof-of-concept prototype and on the other hand to derive and 
validate the reference architecture. The resulting reference architecture is evaluated 
with the partners and continuously developed further. 

2.5 Building Block View 

This section describes the decomposition of the reference architecture into subsystems 
and modules. The building block view level 1 presents the first decomposition level of 
the reference architecture containing all subsystems including their interfaces. For the 
subsystem this overview also includes a more detailed breakdown into level 2 (see 
section 2.5.2). 

2.5.1 Whitebox Overall System – Level 1 

The reference architecture system breaks down into two kinds of subsystems as 
presented in Figure 2 and explained in Table 4. The dashed arrows represent 
connections between the subsystems and indicate that the two connected entities can 
send messages to each other. The squared boxes on the membrane of the system are 
interaction points with the outside world. 
 



Fraunhofer ISST & Fraunhofer IML          12 | 27 

 

 
 

Reference Software Architecture 

 
 
 

 

Figure 2: Reference Architecture, building block view, level 1. 

 

Table 4: Description of platform subsystems 

Subsystem Short description 

Connector Base infrastructure that provides web server 
functionalities and an extension mechanism. 

Broker Connector where all platform services register for 
exchange of information and actions. 

 

2.5.1.1 Blackbox Subsystem Connector 

Purpose 

An open-source project that is used as framework that provides an infrastructure for a 
webserver and an extension mechanism that allows to build services with a variety of 
different functionalities that are run in parallel and can also be isolated. 

Interfaces 

The Connector has an HTTP interface which allows interaction with the connector itself 
and the extensions that are integrated. 

2.5.1.2 Blackbox Subsystem Broker 

Purpose 



Fraunhofer ISST & Fraunhofer IML          13 | 27 

 

 
 

Reference Software Architecture 

 
 
 

A Connector that runs an extension where all services of a platform must register and 
provide metadata to. Other Connectors and services on the platform can then use this 
data to interact with each other. 

Interfaces 

The Broker has an HTTP interface to communicate with other Connectors/services. 

2.5.2 Whitebox Level 2: Connector 

As shown in Figure 3 and described in Table 5, the Connector component is divided 
into two modules. A bidirectional connection between subsystems is represented by 
the dashed line. 
 
 

 

Figure 3: Whitebox view of Connector component. 

 

Table 5: Description of Connector modules 

Module Short Description 

Extension A subsystem of a Connector that may offer an http-accessible 
REST-API, can contain arbitrary functionality, such as other 
extensions and libraries, and has access to the Connector’s 
other systems at runtime. 

Service Information An extension that provides information about the running 
extensions and APIs of a Connector to external entities over a 
REST API and automatically registers the Connector it is run on 
at the platform Broker. 

Database An extension that contains an abstraction layer for an 
underlying database and can serve as a single point of access 
for database-related tasks for all extensions running inside the 
Connector. It also offers JSON parsing functionality at runtime. 

Data Model Library A library that contains the complete prototype data model as 
well as utility functions for JSON parsing and database 
interaction. 

 



Fraunhofer ISST & Fraunhofer IML          14 | 27 

 

 
 

Reference Software Architecture 

 
 
 

2.5.2.1 Blackbox Module Extension 

Purpose 

Provide an arbitrary new functionality to a Connector with possible utilization of other 
extensions and libraries while optionally offering a REST-API over HTTP. 

Interfaces 

An extension optionally offers a REST-API over HTTP and therefore communication to 
other services can be realized over HTTP. 

2.5.2.2 Blackbox Module Service Information 

Purpose 

An extension to provide information about the Connector’s extensions and APIs as well 
as registering at the platform Broker. 

Interfaces 

The extension offers a REST-API over HTTP. 

2.5.2.3 Blackbox Module Database 

Purpose 

A single point of access for all extensions to interact with a certain database in the 
form of an extension that provides a database abstraction layer and JSON parsing 
functionality. 

Interfaces 

The Database extension provides a ready-to-use database with an API that exposes all 
required functions to interact with the database and parsing JSON data. 

2.5.2.4 Blackbox Module Data Model Library 

Purpose 

Bundle the complete data model required for the prototype platform in a single library 
to simplify implementation and provide an abstraction for database interactions and 
JSON handling in general. This library provides the underlying functions used in the 
Database extension. 

Interfaces 



Fraunhofer ISST & Fraunhofer IML          15 | 27 

 

 
 

Reference Software Architecture 

 
 
 

The exposed functions of this library are used for database interaction and JSON 
handling. 

2.5.3 Whitebox Level 3: Extension 

The Delivery Planning module is composed of two submodules, as indicated in Figure 4 
and presented in Table 6. 
 

 

Figure 4: Whitebox view of an Extension. 

 

Table 6: Description of Extension submodules 

Submodule Short Description 

Extension Core Contains the extension functionality that runs on the 
Connector and implements the API interface. 

Extension API The API interface of the extension that defines the REST-API. 

 

2.5.3.1 Blackbox Submodule Extension Core 

Purpose 

The Extension Core contains the functionality that the extension provides at runtime. 

Interfaces 

The core implements the interface(s) defined in the Extension API module so that the 
REST-API endpoints have functionality. Additionally, the Extension Core has the 
possibility to connect to other services via HTTP. 

2.5.3.2 Blackbox Submodule Extension API 

Purpose 

The Extension API module defines the interface from which the REST-API is generated. 
It can then be implemented by any core or extended by other APIs. 

Interfaces 



Fraunhofer ISST & Fraunhofer IML          16 | 27 

 

 
 

Reference Software Architecture 

 
 
 

The Extension API defines the API, but the interface must be implemented to provide 
the endpoints at runtime. 

2.5.4 Whitebox Level 4.1: Extension Core 

The Extension submodule is composed into two classes, as indicated in Figure 4 and 
shown in Table 7. 
 

 

Figure 5: Whitebox view of the Extension Core submodule. 

 

Table 7: Description of Extension classes 

Class Short Description 

ApiController Implements the API of the extension. 

EndpointExtension Initializes the Extension. 

 

2.5.4.1 Blackbox Class ApiController 

Purpose 

Contains the implementation of the API. 

Interfaces 

Provides HTTP endpoints for external communication. 

2.5.4.2 Blackbox Class EndpointExtension 

Purpose 

Contains the code that is called by the Connector to initialize the extension, including 
the API and web interface, as well as all other services that are required by the 
extension.  

Interfaces 

This class hat no interfaces. 



Fraunhofer ISST & Fraunhofer IML          17 | 27 

 

 
 

Reference Software Architecture 

 
 
 

2.5.5 Whitebox Level 4.2: Extension API 

The Extension API submodule can be composed of multiple interface classes, as 
indicated in Figure 6 and described in Table 8. 
 

 

Figure 6: Whitebox view of the Extension API submodule. 

 

Table 8: Description of Extension interfaces 

Class Short Description 

Api Main API of the extension. 

InfoApi API example with some common routes shared between 
extensions. 

ExtensionName Specialized API that represents the extension specific API calls. 

 

2.5.5.1 Blackbox Class Api 

Purpose 

The main API definition from that also defines some metadata for the OpenApi 
generators. It may extend other interfaces and bundle them in this interface. 

Interfaces 

Contains all HTTP API endpoint definitions for an extension. 

2.5.5.2 Blackbox Class InfoApi 

Purpose 



Fraunhofer ISST & Fraunhofer IML          18 | 27 

 

 
 

Reference Software Architecture 

 
 
 

Provide some basic or common definitions that can be shared over many extensions. 

Interfaces 

Contains HTTP API endpoint definitions for an extension. 

2.5.5.3 Blackbox Class ExtensionName 

Purpose 

Defines the actual extension interface with the functions/routes that are specific to this 
extension. 

Interfaces 

Contains HTTP API endpoints for an extension. 

2.6 Runtime View 

In contrast to the static building block view, this section visualizes dynamic aspects of 
the reference architecture. The runtime view describes concrete behavior and 
interactions of the system’s building blocks across the architecture, i.e., how instances 
of building blocks within the reference architecture perform their job and communicate 
at runtime. 

2.6.1 Register at Broker 

 

Figure 7: Runtime View for process Register at Broker 

         

        

        

                             

                             

      

      

                     

                  

      

                 

                        

      

                            

         

      



Fraunhofer ISST & Fraunhofer IML          19 | 27 

 

 
 

Reference Software Architecture 

 
 
 

As depicted in Figure 7, to register at a service at the platform broker, the Service-
Information-Extension of a Connector checks if information about the self-offered 
services is available locally (e.g. in a file) and then loads the stored information in the 
database. These two versions of the information are then compared and if the local 
version differs from the one stored in the database, the database version is updated. 
Following this, the extension then sends a registration request with meta information 
to the Broker. If the Broker already knows the service and the current information is 
correct, the Broker communicates that the service is already registered, if the service is 
new or something changed the Broker responds accordingly.  

2.6.2 Request information from Broker 

 

Figure 8: Runtime View for Request information from Broker 

To request information about other services from the Broker the process is carried out 
as shown in Figure 8. Extension A initiates the sequence by requesting to obtain the 
information about the desired services from the Broker. The Service-Information-
Extension receives this call and requests the information from the Broker. 
 
The Broker then gathers the necessary data and returns the collected information to 
the Service-Information-Extension, which subsequently sends the result back to 
Extension A. This flow ensures that Extension A receives the most up-to-date service 
information. 

2.6.3 Interaction between services 

           

           

           

                             

                             

      

      

                       

             

                    

      

      



Fraunhofer ISST & Fraunhofer IML          20 | 27 

 

 
 

Reference Software Architecture 

 
 
 

 

Figure 9: Runtime View for Interaction between services 

The in Figure 9 depicted process shows the interaction between different services. The 
interactions can be linked and carried out arbitrarily between the different entities, so 
workflows can involve multiple Connectors and extensions if it is required. Here, 
Extension B of Connector 2 initiates the sequence by requesting information from 
Extension A of Connector 1. Upon receiving this call, Extension A processes the request 
and subsequently calls Extension C, as it requires information that Extension C 
provides. Extension C then makes a request to Extension D of Connector 3 with 
another piece of required information. As soon as Extension D returns the information 
all participants of this interaction can sequentially respond with the desired information 
and fulfill their received request and conclude the interaction.  

2.7 Deployment View 

Software does not run without hardware. This view describes the deployment of the 
reference architecture. It describes the technical infrastructure used to execute the 
reference architecture, with infrastructure elements like computing nodes and the 
mapping/installation of compiled software building block instances to that 
infrastructure elements. 
The following deployment diagram Figure 10 shows the deployment of the system in a 
local environment. 

                                 

           

           

           

           

           

           

           

           

                

                

                

      

      

      



Fraunhofer ISST & Fraunhofer IML          21 | 27 

 

 
 

Reference Software Architecture 

 
 
 

  

Figure 10: Deployment view 

The script deploys two jar files. The first one is the Broker. The Broker contains an 
extension called Broker Service. This one gives the Broker the ability to store and 
provide meta data from different Connectors. The other extensions deliver basic 
functionalities for the Broker. 
The second one is the Connector, which is here called Connector A. This represents 
every Connector that is deployed. A Connector also used the extensions Data Model 
and Database to get basic functionalities. Besides this, the Service Information 
extension is also used to send meta data information to the Broker. The last one, 
Extension n, stands for every extension that is deployed within this Connector. 

2.8 Cross-Cutting Concepts 

These concepts form the basis for conceptual integrity (consistency, homogeneity) of 
the architecture. Thus, they are an important contribution to achieving inner qualities. 
This section describes general structures and system-wide cross-cutting aspects. It also 
presents various technical solutions. 

     
      

     
           

        
            

           
              

           

        

           
          

           

           

           
        

           

          

           
                   

       

       



Fraunhofer ISST & Fraunhofer IML          22 | 27 

 

 
 

Reference Software Architecture 

 
 
 

2.8.1 Data Model 

A shared data model is required to allow a hassle-free communication between all 
services. The platform related models are re-usable and extendable and other models 
are use-case specific. 

2.8.2 API 

All extensions define their own REST-API over which the exposed functionalities are 
accessible with well-defined interface definitions. 

2.8.3 Architectures 

The platform is designed with a combination of the Peer-to-Peer, Client-Server, and 
Plugin architectures. A short description of their purpose is presented in the following 
sections. 

2.8.3.1 Peer-to-Peer Architecture 

The platform network setup is realized with a peer-to-peer architecture. Every 
Connector can communicate directly with any other Connector as soon it received the 
relevant information from the platform Broker. 

2.8.3.2 Client-Server Architecture 

The inter-Connector interaction is carried out by using the Client-Server architecture. 
The Connectors send requests over HTTP. The requests are sent and handled by 
extensions running inside the Connector. This allows the Connectors to be client and 
server at the same time in certain scenarios when different extensions interact with 
each other. 

2.8.3.3 Plugin Architecture 

The internal Connector architecture is realized using the Plugin Architecture and in this 
version the plugins are called extensions. It consists of a core holding the base 
functionality and a variety of extensions integrated out of the box. Additional 
extensions are used to realize the Connector services and they can also interact with 
each other. 

2.8.4 Communication 

The RESTful API communication is used between the different services and is based on 
HTTP. This allows for flexible, clear, and sufficiently quick communication and 
configuration of the services which are encapsuled in extensions. 

2.9 Architecture Decisions 

This section contains important, expensive, large scale or risky architecture decisions 
including rationales. 

2.9.1 Using Template Connector 

2.9.1.1 Problem 



Fraunhofer ISST & Fraunhofer IML          23 | 27 

 

 
 

Reference Software Architecture 

 
 
 

Every participant of the platform who wants to provide a service requires a personal 
Connector with a use-case tailored configuration and variety of extensions. The base 
setup is mostly equivalent. 

2.9.1.2 Constraints 

The implementation should be as simple and dynamic as possible. 

2.9.1.3 Considered Alternatives 

Building a complete setup from scratch for all participants. 

2.9.1.4 Decision 

A template Connector was created that offers a solid base configuration for all 
participants. The setup of extensions and configuration files are customized for the 
participants needs to fit their use-case. 

2.9.2 Using Template Extension 

2.9.2.1 Problem 

For the interactions in the workflow different functionalities are required. These 
functionalities repeat in certain steps with different participants. 

2.9.2.2 Constraints 

The effort to realize repeating functionalities should be kept minimal. 

2.9.2.3 Considered Alternatives 

Creating one extension per Connector that encapsules all the services required 
functionalities. 

2.9.2.4 Decision 

These functionalities should be encapsuled inside extensions that can be used on every 
Connector. As a common base, a template extension was created. All developed 
extensions are based on this template. 

2.10 Quality Requirements 

The quality scenarios in this section depict the fundamental quality goals of the data 
marketplace as well as the quality goals defined earlier in this document. They allow 
the evaluation of decision alternatives. A listing of the quality requirements is shown in 
Table 9. 
 

Table 9: List of quality requirements 

ID Scenario 

1 Every extension has the same skeleton. 

2 Every Connector has the same skeleton. 



Fraunhofer ISST & Fraunhofer IML          24 | 27 

 

 
 

Reference Software Architecture 

 
 
 

3 Each Connector has its own ready-to-use database. 

4 Each extension uses the same data model. 

5 The usage of this reference architecture is independent from technology 

6 The communication is scalable 

7 Systems in a network based on the reference architecture are exchangeable 

 

2.11 Risks and Technical Debts 

This section describes the risks which might occur when you use the architecture and 
how they are mitigated. 

2.11.1 Risk 1: Versioning incompatibilities 

2.11.1.1 Description 

The EDC Connector features might change or get discontinued in new versions and 
that may result in an incompatibility with the architecture described in this document. 
The most significant feature required for the architecture is the extension mechanism. 

2.11.1.2 Risk Mitigation 

This can be prevented by using a technology stack that offers a framework for 
developing and combining extensions into a single service. 

2.11.2 Risk 2: Setup up of Data Space components is not trivial 

2.11.2.1 Description 

Deploying Connectors and Data Space components is no trivial matter. Configuration 
and launching require a good technical understanding of the structure and functioning 
of the components. 

2.11.2.2 Risk Mitigation 

Participation in training courses or contributing to the development of components as 
part of open-source development vastly improves knowledge of how Data Space 
components work and can be deployed. 

2.11.3 Risk 3: Connection to another Connector fails 

2.11.3.1 Description 

The connection to another Connector may be interrupted. In this case, no more data 
can be obtained between the Connectors. 

2.11.3.2 Risk Mitigation 

Mechanisms can inform when it is no longer possible to connect to another Connector. 

2.12 Glossary 



Fraunhofer ISST & Fraunhofer IML          25 | 27 

 

 
 

Reference Software Architecture 

 
 
 

The most important domain and technical terms that your stakeholders use when 
discussing the system are described in Table 10. 
 

Table 10: Glossary 

Term Explanation 

Connector The Connector is a basic component that offers a framework for HTTP 
based communication and an extension mechanic to build use case 
tailored processes 

Broker The Broker is an entity that has meta information about all involved 
parties and helps entities to reach each other and carry out interactions   

HTTP HTTP stands for Hypertext Transfer Protocol, which is a protocol used 
for transferring hypertext requests and information on the network. 

API API stands for Application Programming Interface, which is a set of 
rules that allows different software applications to communicate with 
each other. 

REST-API REST-API stands for Representational State Transfer Application 
Programming Interface, which is an architectural style that uses HTTP 
requests to access and manipulate data. 

 



Fraunhofer ISST & Fraunhofer IML          26 | 27 

 

 
 

Conclusion 

 
 
 

3   
Conclusion 

The underlying reference architecture highlights how companies can implement a 
digital platform solution using the logic of Brokers and IDS Connectors. That allows 
easy registration of services and simple detection of those services within the platform. 
The basic requirement for a successful B2B platform economy is the scalability of the 
system. Since supply chains in the industrial sector are characterized by high levels of 
heterogeneity in the participants' digital skills, simple integration solutions are required. 
Thus, companies that wish to build and implement their own platform solutions and 
wish for easy integration of their partners can use the underlying reference architecture 
and the respective logic as a starting point for their B2B platforms respectively as a 
starting point for digitalizing their supply chain processes.  
 
Together with the different results of the Silicon Economy project, companies find 
valuable information and sources for digitalizing logistical and supply chain-related 
processes. Apart from various levels of digitalization skills, the lack of de facto 
standards is an additional challenge for companies in the B2B field. Especially in 
logistics, where processes are similar and aim for the same result (e.g., a transport or a 
pallet exchange or packaging), companies still have individual rules and ways to realize 
their processes. This hampers the harmonizing of digital solutions which again hampers 
the emergence of B2B platforms. Thus, de facto standards are necessary.  
 
Those standards can be created by developing so-called commodity solutions jointly in 
an open-source process. This is the idea and purpose of the Open Logistics Foundation1 
that was brought to life during the project phase of the Silicon Economy and now 
operates as an industry-funded, independent organization. On the one hand, the Open 
Logistics Foundation hosts the Silicon Economy open-source software solutions, while 
on the other hand, different working groups advance the open-source developments.  
Within the different working groups industry representatives develop joint de facto 
standards and create different open-source software solutions for various logistical 
challenges. The Silicon Economy initiative has provided the starting point for this open-
source movement within the B2B domain of logistics and beyond. Companies can 
benefit from the open-source software solutions and the idea of open-source being an 
innovation method as well as a cooperation- and collaboration tool. Openness, 
cooperation, and collaboration within the supply chain in an organizational matter but 
also on technological and software-related levels enables and eases B2B platform 
business models. 
 
 
 
 
 
 
 
 

 

 

1 https://openlogisticsfoundation.org/  

https://openlogisticsfoundation.org/


Fraunhofer ISST & Fraunhofer IML          27 | 27 

 

 
 

Conclusion 

 
 
 

 

 

Figure 1: Use Case of a 4PL platform business model with relevant stakeholders ................ 7 
Figure 2: Reference Architecture, building block view, level 1. ............................................ 12 
Figure 3: Whitebox view of Connector component. ............................................................ 13 
Figure 4: Whitebox view of an Extension. ........................................................................... 15 
Figure 5: Whitebox view of the Extension Core submodule. ............................................... 16 
Figure 6: Whitebox view of the Extension API submodule. .................................................. 17 
Figure 7: Runtime View for process Register at Broker ........................................................ 18 
Figure 8: Runtime View for Request information from Broker ............................................. 19 
Figure 9: Runtime View for Interaction between services .................................................... 20 
Figure 10: Deployment view ............................................................................................... 21 

 

Table 1 Quality goals .......................................................................................................... 8 
Table 2 Technical constraints .............................................................................................. 10 
Table 3 Conventions ........................................................................................................... 10 
Table 4: Description of platform subsystems ....................................................................... 12 
Table 5: Description of Connector modules ........................................................................ 13 
Table 6: Description of Extension submodules .................................................................... 15 
Table 7: Description of Extension classes ............................................................................. 16 
Table 8: Description of Extension interfaces ........................................................................ 17 
Table 9: List of quality requirements ................................................................................... 23 
Table 10: Glossary .............................................................................................................. 25 

 


